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Abstract  —  A 3D-FDTD subgridding technique based
on a finite element formulation is presented. This
subgridding technique is applied to compute the input
impedance of a mobile phone antenna. The obtained
results are in good agreement with those obtained
using a uniform mesh, while the CPU time and the
used computer memory are largely less important.

I. INTRODUCTION

The popular Finite Difference Time Domain
(FDTD) method uses a uniform orthogonal
structured mesh to describe the geometry of studied
structures. This structured mesh, upon which the
success of this technique is based, has a drawback
when curved or fine objects have to be studied. In
such cases, the mesh has to be fine in the entire
domain to avoid errors due to ''staircase
approximation''. However in most of the studied
problems geometrically-difficult sub-domains are not
spread throughout the computational domain. Then a
uniform fine mesh leads to a waste of computer
memory and CPU time. This is the reason for which
subgridding techniques are proposed as an efficient
tool to improve the FDTD [1]. They consist in using
a fine mesh only in the geometrically-critical areas
and a coarse mesh elsewhere. The validity of a
subgridding scheme relies on the proper processing
of the fine mesh/coarse mesh interfaces. For
instance, stability is a key issue.

II. SUBGRIDDING  METHOD

In our subgridding method, FDTD is considered as
a special case of Finite Element Time Domain
(FETD) method, using structured mesh and mass
lumping [2].  This method was initially developed in
the 2D case [3] and then extended to the 3D case [4].

A. Basic Equations

Basically, the problem is to compute the evolution
of the electromagnetic field in a given domain !
splitted into two computational domains !c and !f

(with !"!#! fc ) meshed independently, even on
their common interface (figure 1).

!c
!f

Fig. 1.  Geometry of the problem.
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In each domain, Maxwell curl equations must be
verified:
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The matching condition between both domains is
the continutiy of  tangential electric field and normal
magnetic field over the meshes interface. For
notation convenience, the normal magnetic field
continuity is ensured through “currents” defined by

HnJ )" , where n is a vector normal to the meshes
interface:

cf EnEn )")       (2)

0"$ fc JJ                                                        (3)

Equations (1), (2) and (3) are then multiplied by a
“test function” and integrated over the computational
domain, in order to obtain the weak formulation of
the problem.  It is worth to mention, from a
mathematical point of view, that the electric currents
Jc and Jf can be considered as the Lagrange
multipliers associated to the problem [5].

B. Spatial discretization

Fields, currents, and test functions are then
developed on a base of mixed (edge/face) elements.
This Galerkin process leads to a set of  matrices
equations:
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In these equations, Rc and Rf are discrete curl
operators, (c and (f describe the interaction between

edges of the coarse mesh and those of the fine mesh
respectively, µc and µf describe the interaction
between faces of the coarse mesh and those of the
fine mesh respectiveley, Mc and Mf describe the
interaction between edge elements located on the
meshes interface on the coarse mesh and on the fine
mesh respectively, Nfc relates the edge elements of
the coarse mesh to the fine one on the interface (it is
a kind of ''projection'' matrix), Tc and Tf are space
matrices whose subblocks are respectively Mc and
Mf. One of the key points of the method can be seen
in the equation 0"' tcctcc eMeM , which expresses
the fact that one must choose a reference for the
representation of the electric field on the interface. In
this work, the coarse representation was chosen.

C. Mass lumping

In order to diagonalize all matrices, a mass lumping
process is performed. In the computation of matrices
elements, this process consists of replacing
continuous integration by discrete summation over
the vertices of the elements. This is equivalent to
modify the shape of the edge elements, as shown in
figure 2. The lumping process is also performed for
matrices involving 2D elements at the meshes
interface.

Fig. 2 Effect of the mass lumping process on the edge
elements.

D. Time discretization

To compute the time evolution of the fields, a leap-
frog time scheme is adopted [6]. Note that for
stability reasons, the time step in the fine meh is not
necessarily the same as that in the coarse one: we can
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talk of  space-time subgridding. Our formulation
shows that the classical Yee scheme is obtained
inside both domains, while a modified Yee scheme is
obtained at the meshes interfaces. Figure 3 illustrates
the interdependence between fields by representing
the first steps of the time scheme, in a case of a time
step reduction factor of 3.  In this figure, capital
letters represent fields in the coarse mesh while small
letters represent fields in the fine mesh. A field
placed at the starting point of an arrow is used to
update the field placed at the arrowhead. Large
vertical arrows show the tangentiel electric field
projection from “fine side” to “coarse side” at the
meshes interface.  The scheduling of fields updates
and  projections is indicated by the numbers
associated to each arrow.
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Fig 3. Subgridding time scheme, showing the
interdependence between fields.

III. TEST CASE

The subgridding scheme proposed above is used to
compute the input impedance at 900 MHz of a GSM
cellular phone antenna. The structure is modeled as a
quarter wavelength dipole placed upon a metallic
box (figure 4). The antenna is excited by a gap of
length d=0.5 cm which is placed juste above the box.
The size of the FDTD cell in the direction of the
antenna cannot be larger than the gap length, which
is very small compared to the wavelength (d=-/66 at
the frequency of operation). Using a uniform mesh,
this leads to a globally over-precised mesh.

The structure is firstly meshed using a uniform 5
mm x 5 mm x 5 mm mesh, the phone being at the
center of a 2-.x 2-.x 2.5-..box covered by Mur 1st

order type absorbing boundary conditions (figure 5).
The input impedance Z1 is calculated and found to be
44,05 – j 21,65 !/ The structure is then studied using
the subgridding scheme. The phone is meshed using
the same mesh dimensions as above, while the
peripherical region is meshed three times coarser.
The input impedance is found to be Z2=43.56 – j
21.80 !. We can see that Z1 and Z2 are nearly
similar. A difference of 1.1 % for the real part is
calculated. The results are also in good agreement
with those obtained by [7] using a finite element
analysis in the frequency domain. The simulation in
the sub-gridded case takes 7 times less memory and
14 times less CPU time than the uniform one. Then,
we performed the calculation of the input impedance
over a broad frequency band. As can be seen from
figure 6 results for the real part of the input
impedance using a uniform mesh and those using our
proposed subgridding technique are nearly
coincident.

Fig 4. Mobile phone model.
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Fig. 5 Position of the interfaces for the studied mobile
phone antenna.
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Fig. 6 Variation of the real part of the input impedance
of a mobile phone antenna as a function of frequency.

IV. CONCLUSION

The proposed FEM based FDTD subgridding
scheme is shown to be an efficient technique that
allows the electromagnetic characterization of
problems having different geometrically difficult
subdomains. It leads to the use of largely less
computer memory and CPU time than the case when

uniform mesh is used for the global domain
discretisation. The validity of our proposed
subgridding scheme is demonstrated through its
application on the test case of a mobile phone
antenna and the comparison of the results using our
technique to those obtained using uniform mesh. The
proposed formulation could be applied in the case
where one of the two meshes is unstructured
(tetrahedral) while the other is structured
(parallelepipedical).   The technique can then be seen
as a finite element/ finite differences hybridation
scheme, which would allow even more flexibility in
the geometry of studied strucutres.
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